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FREQUENCY EQUATION OF THIN SHELL
VIBRATION IN THE TRANSITION RANGE
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In this paper, the frequency equation of thin shell vibration in the transition
range is deduced, the frequency equation of bending vibration is given, and finally
the results are verified with numerical calculation.
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1. INTRODUCTION

Gol’denveizer et al. [1] pointed out that the axisymmetric vibration of revolution
thin shells may be described by only including the normal displacement w in the
following higher order equation

−m5$ s
6

n=0

dn (s)
dnW
dsn %+ s

2

n=0

bn (s)
dnW
dsn =0 (d6 =1), (1)

where b2(s)=V2 −R−2
2 (s). When the frequency parameter V is in the frequency

interval (the transition range) where

min R−1
2 (s)EVEmax R−1

2 (s) (aE sE b),

for any frequency there is a circle (s= s*) which divides the middle surface of the
shell into three parts along the longitude: aQ sQ s*, =s− s*=0 0 (m) and
s*Q sQ b. In the three parts b2(s) can be positive, zero and negative, respectively.
The corresponding solutions of equation (1) in these three parts have different
characteristics. The point s= s*[b2(s*)=0] is therefore called the turning point,
whose position can be shifted by changing frequency f. For f= ftb = c/[2pR*2 (b)]
(c=(E/r)1/2), the turning point is on the outer edge. As the frequency is increased,
the turning point shifts from the outer edge of the shell to the inner edge. For
f= fta = c/[2pR*2 (a)], the turning point is on the inner edge. Frequency f will find
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itself in one of the three frequency ranges: low frequency range ( fQ ftb ), transition
range ( ftb Q fQ fta ) and high frequency range ( fq fta ).

The loudspeakers are shaped as a typical cone with a thin shell. According to
the theory of thin shells, in the low frequency range there is no bending resonance
of cones [2], because the actual size of loudspeaker cones is less than half the
wavelength [3], also there is no longitudinal resonance. The transition range is
actually beyond the effective frequency range of loudspeakers. So the natural
frequencies which really exert an influence on sound radiation of loudspeakers
only exist in the transition range. Recently, the uniformly valid solutions of
equation (1) in the transition range have been obtained, which was considered to
be difficult to resolve [4].

In the following context, the four bending solutions in the transition range will
be shown to be improved by redefining the first category of the generalized
functions. The frequency equation of vibration of cone shaped thin shells, which
is based on the uniformly valid solutions in the whole interval of s, has also been
obtained. Finally, the independent frequency equation of bending vibration will
be given.

2. THE BENDING SOLUTIONS IN TRANSITION RANGE

The uniformly valid solution of a thin shell in the transition range has been
obtained by Zhang and Zhang [4]. Their results will be used for obtaining the
bending solutions in the transition range.

According to Sander’s theory of thin shells, after separating time variable eivt

the system of equations, which represents the free vibration of revolution thin
shells, may be written as

(L+ m5N)U=−(1− n2)V2U, (2)

where the operators are

L=$L11 L13
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ds3 + . . . ,

N33 = (1− n2)6− d4

ds4 −2
B'
B

d3

ds3 +$0B'
B1

2

−
1+ n

R1R2% d2

ds2

−$0B'
B1

3

−
2

R1R2

B'
B

− n0 1
R11

2 B'
B

+
n

R2 0 1
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ds7.
Here N11, N31 and the lower order differential terms of N13 are neglected because
they are so small that they do not contribute to our problem.

By introducing the Langer’s variable z and z

z= m−1z= m−1F(s)= m−1$54 g
s

s
*

b1/4
2 (x) dx%

4/5

,

and the new dependent variable

Y(z)=$b2(s)
mz %

1/8

W(s)= s
a

n=0

mnYn (z), (3)

and substituting them into equation (2), a series of equations are obtained as
follows:

ADY0(z)=0,

ADY1(z)= [a(z)D5 + b(z)]Y0(z),

ADY2(z)= [a(z)D5 + b(z)]Y1(z)+ g(z)D4Y0(z),

. . . (4)

where A and D are differential operators

D=
d
dz

, A=D5 − zD−2,

and a(z), b(z) and g(z) are slowly varying coefficients.
The equation,

Af(z)=0, (5)

is referred to as the related equation corresponding to equation (2), the solutions
of which are called the related function.
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The solutions of the related equation (5), and their corresponding differentials
and integrals can all be expressed as

FK (z, P)=
1

2pi gLK

t−p exp0zt− t5

51 dt, (K=0, 1, . . . , 5, P=0, 21, 22. . . . ),

(6)

where LK represents the contours in complex t-plane, as shown in Figure 1. When
p=−1, FK are the solutions of equation (5). When p$−1, FK are their
differentials and integrals.

The first category of the generalized related function Zh (z, p) (h=1, 2, 3, 4) is
defined by the combination of FK as follows:

Z1(z, P)=−F3(z, P), Z2(z, P)=−i[F2(z, P)−F4(z, P)],

Z3(z, P)=−i[F1(z, P)−F5(z, P)], Z4(z, P)=F1(z, P)+F5(z, P),

for any real value of z, Zh (z, P) (h=1, 2, 3, 4) is identically a real function.
It is straightforward to verify that Zh (z, P) satisfies the following relations:

(A+P+1)Zh (z, P)=0, DnZh (z, P)=Zh (z, P− n), (7a, b)

Zh (z, P−5)− zZh (z, P−1)+ (P−1)Zh (z, P)=0, (7c)

ADZh (z, P+1)=−(P+1)Zh (z, P). (7d)

From equation (4) and relations (7), Y0(z), Y1(z), Y2(z) . . . can be obtained in
terms of Zh (z, P). Inserting them back into equation (3) and expressing Zh (z, P)

Figure 1. Contours LK (K=0, 1, 2, 3, 4, 5) in the t-plane.
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Figure 2. (a) Geometric parameters and displacements; (b) positive direction of stress resultants;
(c) the moments.

(h=1, 2, 3, 4) as Zh (z, 0), Zh (z, 1), . . . , Zh (z, 4) by using the recursion formula
(7c), we may obtain Y(h)(z) in the following form

Y(h)(z)= s
4

n=0

mnpn (z, m)Zh (z, n), (h=1, 2, 3, 4),

where pn (z, m) are slowly varying coefficients.
The bending solutions can be expressed as

uh (z, m)= a1(S)Zh (z, 0)+ mb1(s)Zh (z, 1)+ . . . . ,

Wh (z, m)= a3(S)Zh (z, 0)+ . . . . (h=1, 2, 3, 4). (8)

Finally, by substituting equation (8) into equation (2), the bending solutions can
be written as (due to their uniform validity):

uh (z, m)= m5/8$ 1
R1

−
n

R2%$B(S*)
B(s) %

1/2

$F'(S*)
F'(s) %

3/2 1
F'(s)

Zh (z, 1),

Wh (z, m)= m−3/8$B(S*)
B(s) %

1/2

$F'(S*)
F'(s) %

3/2

Zh (z, 0) (h=1, 2, 3, 4). (9)

3. THE FREQUENCY EQUATION

The inner edge of the loudspeaker, to which the voice coil and inner suspension
are attached, is relatively stiff so that it can only move in the axial direction. In
fact the influence of the boundary conditions of the inner edge is not obvious for
bending resonance in the transition range [3]. The voice coil, as a simple loading
mass, has no obvious influence on the first few bending resonance frequencies. The
cone of the loudspeaker is moved by the axial force. The influence of outer
suspension can be neglected in the transition range, and so one can assume that
the outer edge is free. Thus, the eigen-boundary conditions of the loudspeaker
cone, which are dimensionlessly expressed, can be given by

Q(b)=N1(b)=M1(b)=0, W
 (a)= u(a) sin 8(a)+W(a) cos 8(a)=0,

b(a)=W'(a)=0, (1− n2)o4Q(a) sin 8(a)−N1 cos 8(a)=0, (10)
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where W
 (a) is the displacement normal to the cone axis, 8(a) the angle
between the shell axis and the tangent along the longitude on the inner edge (see
Figure 2).

The stress resultants and moments can be expressed as

N1 = u'+ n
B'
B

u−0 1
R1

−
n

R21W,

M1 =−0 u
R11'− nB'u

BR1
−W0− n

B'
B

W',

Q=−W0−
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W0−$ n

R1R2
−0B'
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2

%W'−0 u
R110−

B'
B 0 u
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−0B'

B1
2

% u
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. (11)

The asymptotic expressions for bending solution, as z: 2a, can be obtained
by the method of steepest descent as follows:

SqS*, (z:+a)
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where

C1(s)=
1

z2p 0 1
R1

−
n

R21$B(S*)
B(s) %

1/2 b(s*)3/10

=b2(s)=5/8

C2(s)=
1

z2p $B(S*)
B(s) %

1/2 b(s*)3/10

=b2(s)=3/8

u= u(s)= o−1 g
s

s
*

b2(x)1/4 dx, a= a(s)=
o−1

z2 g
s
*

S

[−b2(x)]1/4 dx,

b(s*)= b'2 (s)=s= s
*
. (14)

b(s*)$ 0 because the point s= s* is a simple turning point.
The expression of singular membrane solution is obtained from reference [4].

u5 =P5(S)+1nzu(0)
6 (s),

W5 = r5(s)+1nzW(0)
6 (s)+ b1/2(S*)F5/8(s)b−3/8

2 (s)$B(s*)
B(s) %

1/2

, (15)

where P5(s), r5(s) are regular parts of the singular membrane solution, and u(0)
6 (s),

W 0
6 (s) are the leading terms of the regular membrane solution when =s− s*=0 0

(m).
Substituting equations (12), (13) and (15) into equation (11), the order of

magnitude relations for the four bending solutions in equation (11) are: u,
N1 0O(o), W0O(1), b0O(o−1), M1 0O(o−2), Q0Q(o−3) and u, N1 0O(o1/2) for
the fourth bending solution when sq s*. For the regular membrane solution, these
variables are on the order of O(1), or O(=ln o=) for the singular membrane solution.

The exponential decay variables (the variables for the first bending solution
when sq s*, for the third and fourth bending solutions when sQ s*) can be
neglected because u(s), a(s) are fast varying coefficients.

The general solutions of equation (2) consist of the above six solutions.
Suppose that they are in the following form.

u= s
6

i=1

Piui , W= s
6

i=1

PiWi ,

where P1, . . . , P6 are constants determined by boundary conditions (10).
Substituting them into equations (10) and (11), one obtains the frequency
equations from the assumption that the coefficient determinant of Pi is zero:

cos 8(a)[N15(a)N16(b)−N15(b)N16(a)]

×[M13(b)Q4(b)−Q3(b)M14(b)]

+[Q2(b)M13(b)−Q3(b)M12(b)][W
 5(a)N16(a)

−N15(a)W
 6(a)]N14(b)

×b1(a)/[W1(a)b2(a)−W2(a)b1(a)]=O(o−4), (16)
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T 1

The parameters of the loudspeaker cone which is used for calculation

Outer edge radius 83 mm Young’s modulus 2×109 N/m2

Inner edge radius 17 mm Poisson’s ratio 0·3
Thickness 0·23 mm Mass density 600 kg/m3

Semi-apex angle 50°

where the last subscript of each variable denotes the nth solution, the order of
magnitude relation for the first item is O(o−5), and for the second item is O(o−4·5).
Noting that b1(a)/[W1(a)b2(a)−W2(a)b1(a)]=−21/2 cos [a(a)− p/8] e−a(a)/C2(a),
and once again neglecting the exponential decay term, one can obtain the
independent bending frequency equation and the membrane frequency equation
as follows:

KB g
b

S
*

(1−V−2R−2
2 )1/4 ds= u(b)= np (n=0, 1, 2, . . . ), (17a)

N15(a)N16(b)−N15(b)N16(a)=0, (17b)

where Kb is the transverse wave number of the infinite flat plate.
According to the theory of vibration in a thin shell, the bending vibration only

occurs outside the turning pont (s= s*). The integral region of equation (17a) is
from s* to the outer edge. That conforms with the theory. From equation (17a)
one can see that the characteristics of the bending vibration only depend on the
material properties outside the turning point. These characteristics have been
applied to the measurement of the distribution of Young’s modulus along the
generatrix, which has been discussed elsewhere [5].

Furthermore, when VR2�1, the wave number of the bending wave is nearly the
transverse wave number of the infinite flat plate (when VR2 e 1·75, the error of
the above approach is less than 10%).

4. NUMERICAL CALCULATION

In order to prove the above theory, the bending resonance frequencies have been
calculated using equation (17a) and the results compared with those of numerical
calculation.

T 2

The initial three bending resonance frequencies worked out by two methods. The fbrn

denotes the nth bending resonance frequency

Calculation method fbr1 (Hz) fbr2 (Hz) fbr3 (Hz)

Finite element 2366 2668 2993
Using equation (17a) 2251 2613 2925
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The finite element method has been used as the method of numerical calculation.
The parameters of the loudspeaker cone are listed in Table 1. The results of the
calculation are shown in Table 2. It can be seen from Table 1 that the error
between the results of the two calculation methods is about 5%.
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APPENDIX: LIST OF SYMBOLS

All the quantities are dimensionless with the exception of the characteristic shell
radius R*, the Young’s modulus E, the mass density r and all the quantities with
superscripts *.

The subscripts 1 and 2 denote the first and second principal co-ordinate,
respectively. B is Lame’s coefficient of the second principal co-ordinate.

s= s*/R* the first principal co-ordinate along
the longitude

R1 =R*1 /R*, R2 =R*2 /R*, B=B*/R* the geometrical parameters of the
middle surface

u= u*/R*, w=w*/R* the tangential and normal displace-
ments

N1, N2 =N*1 , N*2 /[Eh*(1− n2)] the stress resultants
M1, M2 =M*1 , M*2 /[Eh*R*o4] the moments
Q=Q*/[Eh* o4] the transverse—shear resultant
h= h*/R* thickness of the thin shell
o4 = m5 = h2/[12(1− n2)] parameter of the thickness of the thin

shell
V2 = rv2(R*)2/E the frequency parameter

The positive directions of stress resultants, moments and displacements are shown
in Figure 2.


